首页> 外文OA文献 >Modeling Total Solar Irradiance Variations Using Automated Classification Software On Mount Wilson Data
【2h】

Modeling Total Solar Irradiance Variations Using Automated Classification Software On Mount Wilson Data

机译:使用自动化建模总太阳辐照度变化   威尔逊山数据分类软件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present results using the AutoClass analysis application available atNASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixturemodel classification system developed by Cheeseman and Stutz (1996). We applythis system to Mount Wilson Solar Observatory (MWO) intensity and magnetogramimages and classify individual pixels on the solar surface to calculate dailyindices that are then correlated with total solar irradiance (TSI) to yield aset of regression coefficients. This approach allows us to model the TSI with acorrelation of better than 0.96 for the period 1996 to 2007. These regressioncoefficients applied to classified pixels on the observed solar surface allowthe construction of images of the Sun as it would be seen by TSI measuringinstruments like the Solar Bolometric Imager recently flown by Foukal et al.,(2004). As a consequence of the very high correlation we achieve in reproducingthe TSI record, our approach holds out the possibility of creating an on-going,accurate, independent estimate of TSI variations fromground-based observationswhich could be used to compare, and identify the sources of disagreement among,TSI observations from the various satellite instruments and to fill in gaps inthe satellite record. Further, our spatially-resolved images should assist incharacterizing the particular solar surface regions associated with TSIvariations. Also, since the particular set of MWO data on which this analysisis based is available on a daily basis back to at least 1985, and on anintermittent basis before then, it will be possible to estimate the TSIemission due to identified solar surface features at several solar minima toconstrain the role surface magnetic effects have on long-term trends in solarenergy output.
机译:我们使用NASA / Ames智能系统部提供的AutoClass分析应用程序显示结果。 (2002)是由Cheeseman和Stutz(1996)开发的贝叶斯有限混合模型分类系统。我们将此系统应用于威尔逊山天文台(MWO)的强度​​和磁图图像,并对太阳表面上的各个像素进行分类,以计算每日指标,然后将其与总太阳辐照度(TSI)相关以产生一组回归系数。这种方法使我们能够对1996年至2007年期间TSI的相关度优于0.96进行建模。将这些回归系数应用于观测到的太阳表面上的分类像素,就可以构造太阳图像,就像通过TSI测量诸如Solar的仪器所看到的那样Foukal等人(2004年)最近使用了Bolometric Imager。由于我们在复制TSI记录时实现了非常高的相关性,因此我们的方法支持从地面观测中创建TSI变化的持续,准确,独立估计的可能性,这些可用于比较和确定TSI记录的来源。各种卫星仪器的TSI观测之间存在分歧,并填补了卫星记录中的空白。此外,我们的空间分辨图像应有助于表征与TSI变化相关的特定太阳表面区域。同样,由于该分析所基于的特定的MWO数据集每天至少可以追溯到1985年,并且在此之前可以断断续续地获得,因此有可能估算TSI的发射,这是由于在几个太阳能电池上识别出的太阳表面特征限制表面磁效应对太阳能输出的长期趋势的最小作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号